SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier
Product name: Carbon Steel Flux Cored Wire
Other means of identification: E71-T1, E81T1-A1, E81T1-B2, E81T1-Ni2, E91T1-B3, E100T1-G, 4130
AWS Specifications: A5.20, A5.29

1.2. Relevant identified uses of the substance or mixture and uses advised against
Use of the substance/mixture: For welding consumables and related products

1.3. Details of the supplier of the safety data sheet
Oxford Alloys, Inc.
2632 Tee Dr.
Baton Rouge, LA 70814
technical@oxfordalloys.com

1.4. Emergency telephone number
Emergency number: 225-273-4800

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture
GHS-US classification
Acute Tox. 4 (Oral) H302
Aquatic Acute 1 H400

2.2. Label elements
GHS-US labelling
Hazard pictograms (GHS-US): ![GHS07](image1), ![GHS09](image2)
Signal word (GHS-US): Warning
Hazard statements (GHS-US): H302 - Harmful if swallowed
H400 - Very toxic to aquatic life
Precautionary statements (GHS-US): P264 - Wash thoroughly after handling
P270 - Do not eat, drink or smoke when using this product
P273 - Avoid release to the environment
P301+P312 - IF SWALLOWED: call a POISON CENTER or doctor/physician if you feel unwell
P330 - If swallowed, rinse mouth
P391 - Collect spillage
P501 - Dispose of contents/container in accordance with local/regional/national/international regulations.

2.3. Other hazards
No additional information available

2.4. Unknown acute toxicity (GHS-US)
No data available

SECTION 3: Composition/information on ingredients

3.1. Substances
Not applicable
Full text of H-phrases: see section 16

3.2. Mixture
<table>
<thead>
<tr>
<th>Name</th>
<th>Product identifier</th>
<th>%</th>
<th>GHS-US classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (Fe)</td>
<td>(CAS No) 7439-89-6</td>
<td>93 - 99</td>
<td>Acute Tox. 4 (Oral), H302</td>
</tr>
<tr>
<td>Chromium (Cr)</td>
<td>(CAS No) 7440-47-3</td>
<td>0 - 2.21</td>
<td>Not classified</td>
</tr>
</tbody>
</table>
SECTION 4: First aid measures

4.1. Description of first aid measures

First-aid measures after inhalation: Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

First-aid measures after skin contact: Flush with water for at least 15 minutes. Seek medical attention if irritation develops or persists.

First-aid measures after eye contact: Immediately flush eyes with water and continue washing for at least 15 minutes. Obtain medical attention if discomfort persists.

First-aid measures after ingestion: Do NOT induce vomiting. Get immediate medical attention.

4.2. Most important symptoms and effects, both acute and delayed

Symptoms/injuries after inhalation: Short-term (acute) overexposure to the gases, fumes, and dusts may include irritation of the eyes, lungs, nose, and throat. Some toxic gases associated with welding may cause pulmonary edema, asphyxiation, and death. Acute overexposure may include signs and symptoms such as watery eyes, nose and throat irritation, headache, dizziness, difficulty in breathing, frequent coughing, or chest pain. The presence of chromium/chromate in fume can cause irritation of nasal membranes and skin. The presence of nickel compounds in fume can cause metallic taste, nausea, tightness of chest, fever, and allergic reaction. Excessive inhalation or ingestion of manganese can produce manganese poisoning. Overexposure to manganese compounds may affect the central nervous system, symptoms of which are languor, sleepiness, muscular weakness, emotional disturbances, and spastic gait resembling Parkinsonism. These symptoms can become progressive and permanent if not treated. Excessive inhalation of fumes may cause “Metal Fume Fever” with Flu-like symptoms such as chills, fever, body aches, vomiting, sweating, etc.

Symptoms/injuries after skin contact: Dusts may cause irritation.

Symptoms/injuries after eye contact: Causes eye irritation.

Symptoms/injuries after ingestion: Not an anticipated route of exposure during normal product handling. May be harmful if ingested.

4.3. Indication of any immediate medical attention and special treatment needed

No additional information available

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media: Use extinguishing media appropriate for surrounding fire.

Unsuitable extinguishing media: None.

5.2. Special hazards arising from the substance or mixture

Fire hazard: Not flammable.

Explosion hazard: None known.

5.3. Advice for firefighters

Protection during firefighting: Firefighters should wear full protective gear.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

6.1.1. For non-emergency personnel

No additional information available

6.1.2. For emergency responders

No additional information available

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

For containment: No special measures required.
Methods for cleaning up: Attempt to reclaim the product, if this is possible.

6.4. Reference to other sections
No additional information available

SECTION 7: Handling and storage

7.1. Precautions for safe handling
Precautions for safe handling: Avoid generating dust. Avoid inhaling welding fumes.

7.2. Conditions for safe storage, including any incompatibilities
Storage conditions: No special storage necessary.

7.3. Specific end use(s)
For welding consumables and related products

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Chromium (7440-47-3)

<table>
<thead>
<tr>
<th></th>
<th>USA ACGIH</th>
<th>USA OSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH TWA (mg/m³)</td>
<td>0.5 mg/m³</td>
<td></td>
</tr>
<tr>
<td>OSHA PEL (TWA) (mg/m³)</td>
<td>1 mg/m³</td>
<td></td>
</tr>
</tbody>
</table>

Manganese (7439-96-5)

<table>
<thead>
<tr>
<th></th>
<th>USA ACGIH</th>
<th>USA OSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH TWA (mg/m³)</td>
<td>0.1 mg/m³</td>
<td>0.5 mg/m³</td>
</tr>
<tr>
<td>OSHA PEL (Ceiling) (mg/m³)</td>
<td>5 mg/m³</td>
<td></td>
</tr>
</tbody>
</table>

Molybdenum (7439-98-7)

<table>
<thead>
<tr>
<th></th>
<th>USA ACGIH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH TWA (mg/m³)</td>
<td>3 mg/m³</td>
</tr>
</tbody>
</table>

Silicon (7440-21-3)

<table>
<thead>
<tr>
<th></th>
<th>USA OSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSHA PEL (TWA) (mg/m³)</td>
<td>5 mg/m³</td>
</tr>
</tbody>
</table>

Vanadium (1314-62-1)

<table>
<thead>
<tr>
<th></th>
<th>USA ACGIH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH TWA (mg/m³)</td>
<td>0.05 mg/m³</td>
</tr>
</tbody>
</table>

8.2. Exposure controls

Appropriate engineering controls: Local exhaust and general ventilation must be adequate to meet exposure standards.

Hand protection: Wear welding gloves.

Eye protection: Wear helmet or face shield with filter lens of appropriate shade number. See ANSI/ASC Z49.1 Section 4.2. Provide protective screens and flash goggles, if necessary, to shield others.

Skin and body protection: Wear head and body protection, which help to prevent injury from radiation, sparks, flame and electrical shock. See ANSI Z49.1. At a minimum this includes welder’s gloves and a protective face shield, and may include arm protectors, aprons, hats, shoulder protection, as well as dark substantial clothing. Train the employee not to touch live electrical parts and to insulate him/herself from work and ground. Welders should not wear short sleeve shirts or short pants.

Respiratory protection: If exposure limits are exceeded or irritation is experienced, NIOSH approved respiratory protection should be worn.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical state</td>
<td>Solid</td>
</tr>
<tr>
<td>Appearance</td>
<td>Rods or wire</td>
</tr>
<tr>
<td>Color</td>
<td>Metallic</td>
</tr>
<tr>
<td>Odor</td>
<td>No data available</td>
</tr>
<tr>
<td>Odor threshold</td>
<td>No data available</td>
</tr>
<tr>
<td>pH</td>
<td>No data available</td>
</tr>
<tr>
<td>Relative evaporation rate (butylacetate=1)</td>
<td>No data available</td>
</tr>
<tr>
<td>Melting point</td>
<td>No data available</td>
</tr>
</tbody>
</table>
Freezing point: No data available
Boiling point: No data available
Flash point: No data available
Self ignition temperature: No data available
Decomposition temperature: No data available
Flammability (solid, gas): No data available
Vapour pressure: No data available
Relative vapour density at 20 °C: No data available
Relative density: No data available
Solubility: No data available
Log Pow: No data available
Log Kow: No data available
Viscosity, kinematic: No data available
Viscosity, dynamic: No data available
Explosive properties: No data available
Oxidising properties: No data available
Explosive limits: No data available

9.2. Other information
No additional information available

SECTION 10: Stability and reactivity

10.1. Reactivity
No additional information available

10.2. Chemical stability
The product is stable at normal handling and storage conditions.

10.3. Possibility of hazardous reactions
Will not occur.

10.4. Conditions to avoid
None.

10.5. Incompatible materials
None.

10.6. Hazardous decomposition products
Welding fumes and gases cannot be classified simply. The composition and quantity of both are dependent upon the metal being welded, the process, procedure and welding consumables used. Other conditions which also influence the composition and quantity of the fumes and gases to which workers may be exposed include: coating on the metal being welded (i.e. paint, painting, galvanizing), the number of welders, the volume of the work area, the quality and the amount of ventilation, the position of the welders head with respect to the fume plume, as well as the presence of contaminants in the atmosphere (such as chlorinated hydrocarbon vapors from the cleaning and degreasing activities).

When an electrode is consumed, the fume and gas decomposition products generated are different in percent and form from the ingredients listed in Section 3. Fume and gas decomposition, and not the ingredients in the electrode, are important. The concentration of a given fume or gas component may decrease or increase by many times the original concentration. Also, new compounds not in the electrodes may form. Decomposition products of normal operation include those originating from the volatilization, reaction or oxidation of the materials shown in Section 3, plus those from the base metal coating, etc., as noted above. Reasonable expected fume constituents of this product would include: Complex oxides of iron, manganese, silicon, chromium, nickel, columbium, molybdenum, copper, carbon dioxide, carbon monoxide, ozone and nitrogen oxides. Some products will also contain antimony, barium, molybdenum, aluminum, columbium, magnesium, strontium, tungsten, and or zirconium. Fume limit for chromium, nickel and or manganese may be reached before limit of 5 mg/m3 of general welding fumes is reached.

Gaseous reaction products may include carbon monoxide and carbon dioxide. Ozone and nitrogen oxides may be formed by the radiation from the arc. Determine the composition and quantity of fumes and gases to which workers are exposed by taking an air sample from inside the welder’s helmet if worn or in the worker’s breathing zone. Improve ventilation if exposures are not below limits. See ANSI/AWS F1.1, F1.3 and F1.5, available from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.

SECTION 11: Toxicological information

11.1. Information on toxicological effects
Acute toxicity: Harmful if swallowed.
Carbon Steel Flux Cored Wire

<table>
<thead>
<tr>
<th>Component</th>
<th>ATE (oral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel Flux Cored Wire</td>
<td>500.000 mg/kg bodyweight</td>
</tr>
<tr>
<td>Manganese (7439-96-5)</td>
<td>900000.000 mg/kg</td>
</tr>
<tr>
<td>Silicon (7440-21-3)</td>
<td>3160.000 mg/kg</td>
</tr>
<tr>
<td>Vanadium (1314-62-1)</td>
<td>221.1 - 715.7 mg/kg</td>
</tr>
<tr>
<td>Carbon (7440-44-0)</td>
<td>> 10000 mg/kg</td>
</tr>
<tr>
<td>Iron (7439-89-6)</td>
<td>984 mg/kg</td>
</tr>
</tbody>
</table>

Toxicity

<table>
<thead>
<tr>
<th>Component</th>
<th>ATE (oral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin corrosion/irritation</td>
<td>Not classified</td>
</tr>
<tr>
<td>Serious eye damage/irritation</td>
<td>Not classified</td>
</tr>
<tr>
<td>Respiratory or skin sensitisation</td>
<td>Not classified</td>
</tr>
<tr>
<td>Germ cell mutagenicity</td>
<td>Not classified</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>Not classified</td>
</tr>
</tbody>
</table>

Toxicity

<table>
<thead>
<tr>
<th>Component</th>
<th>ATE (oral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium (7440-47-3)</td>
<td>3 - Not classifiable</td>
</tr>
<tr>
<td>Vanadium (1314-62-1)</td>
<td>2B - Possibly carcinogenic to humans</td>
</tr>
</tbody>
</table>

Section 12: Ecological information

12.1. **Toxicity**
No additional information available

12.2. **Persistence and degradability**
No additional information available

12.3. **Bioaccumulative potential**
No additional information available

12.4. **Mobility in soil**
No additional information available

12.5. **Other adverse effects**
No additional information available

Section 13: Disposal considerations

13.1. **Waste treatment methods**
Waste disposal recommendations: Dispose of contents/container in accordance with local/regional/national/international regulations.
SECTION 14: Transport information

In accordance with DOT / ADR / RID / ADNR / IMDG / ICAO / IATA

<table>
<thead>
<tr>
<th>14.1. UN number</th>
<th>Not a dangerous good in sense of transport regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2. UN proper shipping name</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

SECTION 15: Regulatory information

15.1. US Federal regulations

Chromium (7440-47-3)
- Listed on the United States TSCA (Toxic Substances Control Act) inventory
- Listed on SARA Section 313 (Specific toxic chemical listings)
- SARA Section 313 - Emission Reporting 1.0 %

Manganese (7439-96-5)
- Listed on the United States TSCA (Toxic Substances Control Act) inventory
- Listed on SARA Section 313 (Specific toxic chemical listings)
- SARA Section 313 - Emission Reporting 1.0 %

Molybdenum (7439-98-7)
- Listed on the United States TSCA (Toxic Substances Control Act) inventory

Silicon (7440-21-3)
- Listed on the United States TSCA (Toxic Substances Control Act) inventory

Vanadium (1314-62-1)
- Listed on the United States TSCA (Toxic Substances Control Act) inventory
- Listed on SARA Section 302 (Specific toxic chemical listings)
- SARA Section 302 Threshold Planning Quantity (TPQ) ≤ 10000

Carbon (7440-44-0)
- Listed on the United States TSCA (Toxic Substances Control Act) inventory

Iron (7439-89-6)
- Listed on the United States TSCA (Toxic Substances Control Act) inventory

15.2. US State regulations

<table>
<thead>
<tr>
<th>1314-62-1</th>
<th>U.S. - California - Proposition 65 - Carcinogens List</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. - California - Proposition 65 - Developmental Toxicity</td>
<td>U.S. - California - Proposition 65 - Reproductive Toxicity - Female</td>
<td>U.S. - California - Proposition 65 - Reproductive Toxicity - Male</td>
</tr>
<tr>
<td>U.S. - Massachusetts - Right To Know List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. - Minnesota - Hazardous Substance List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. - New Jersey - Right to Know Hazardous Substance List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. - Pennsylvania - RTK (Right to Know) List</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chromium (7440-47-3)
- U.S. - Massachusetts - Right To Know List
- U.S. - Minnesota - Hazardous Substance List
- U.S. - New Jersey - Right to Know Hazardous Substance List
- U.S. - Pennsylvania - RTK (Right to Know) List

Manganese (7439-96-5)
- U.S. - Massachusetts - Right To Know List
- U.S. - Minnesota - Hazardous Substance List
- U.S. - New Jersey - Right to Know Hazardous Substance List
- U.S. - Pennsylvania - RTK (Right to Know) List

Molybdenum (7439-98-7)
- U.S. - Massachusetts - Right To Know List
- U.S. - Minnesota - Hazardous Substance List
- U.S. - New Jersey - Right to Know Hazardous Substance List
Carbon Steel Flux Cored Wire
Safety Data Sheet

16. Other information

We believe that the information contained herein is current as of the date of this SDS. As the condition or methods of use are beyond Oxford Alloys, Inc. control, Oxford Alloys, Inc. does not assume any responsibility and expressly disclaim any liability for any use of this material. Information contained herein is believed to be true and accurate but all statements or suggestions are made without any warranty, expressed or implied, regarding the accuracy of the information, the hazard connected with the use of this material or the results to be obtained for use thereof. It is the user’s obligation to determine the conditions of safe use of these products.

Full text of H-phrases:

<table>
<thead>
<tr>
<th>Acute Tox. 4 (Oral)</th>
<th>Acute toxicity (oral), Category 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquatic Acute 1</td>
<td>Hazardous to the aquatic environment — AcuteHazard, Category 1</td>
</tr>
<tr>
<td>H302</td>
<td>Harmful if swallowed</td>
</tr>
<tr>
<td>H400</td>
<td>Very toxic to aquatic life</td>
</tr>
</tbody>
</table>

NFPA health hazard

1 - Exposure could cause irritation but only minor residual injury even if no treatment is given.

NFPA fire hazard

0 - Materials that will not burn.

NFPA reactivity

0 - Normally stable, even under fire exposure conditions, and are not reactive with water.

HMIS III Rating

Health: 2 Moderate Hazard - Temporary or minor injury may occur

Flammability: 0 Minimal Hazard

Physical: 0 Minimal Hazard